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 Introduction 

Decarbonising the building sector is integral to global efforts in delivering the Paris Agreement 

commitments. Globally, over the period of 2010 to 2018, owing to continued efficiency 

improvements in building envelopes, systems and equipment, the building sector energy 

intensity per unit of floor area decreased by 11.9% [1]. However, this progress was not 

sufficient to offset the combined effect of improved access to energy, increased ownership of 

energy-consuming devices and rapid growth in building floor area. These factors collectively 

have been driving up the final energy demand from buildings. In 2018, the final energy 

consumption in buildings increased by 7% as compared to its 2010 level, amounting to 125 

exajoules (EJ) and accounting for 36% of global final energy use [2]. The continuously 

increasing trend of energy consumption have rendered the building sector off-track from the 

pathway required to realise the IEA's Sustainable Development Scenario (SDS)[3]. The floor 

area of the building stock has a direct impact on the acceleration of building energy intensity 

reduction needed to bring buildings on track with the SDS. The target for building energy 

intensity will have significant implications for policies, technologies, investment and financing 

required to support the decarbonisation of both new and existing buildings. Therefore, it is 

essential to understand the current status of the existing building stock and to model possible 

trajectories of the stock's expansion and evolution over time. The lack of official statistics on 

historical floor area, especially in many developing countries [4], presents a critical challenge 

to this task. 

 

China is a major driving force of the growth of global building sector. The total floor area of the 

new buildings constructed in China in 2018 was 2.5 billion m2 [5], accounting for over a third 

(33.8%) of the global total of new buildings of 7.4 billion m2 [6]. According to the World Energy 

Outlook 2019 [7], the final energy consumption by buildings in China, as the world's largest 

building energy consumer, was 504 million tonnes of oil equivalent, or 21.1 EJ, in 2018. In 

comparison, the buildings in the US, European Union and India respectively consumed 20.8, 

18.2 and 9.1 EJ in the same year. China's share in final energy consumption by global 

buildings increased to 16.3% in 2018, from its 2010 level of 13.1%. Of this total energy 

consumption in Chinese buildings, urban residential buildings accounted for more than one 

third [8]. With growing urban population and higher demand for energy services in the built 

environment, urban residential buildings will have increasing strategic importance in China's 

efforts in decarbonising its building sector. Whilst the floor area is critical to the stock-level 

energy consumption, official statistics on total floor area of urban residential buildings in China 

only exist up to 2006 [9]. As a result, the historical growth trajectory of the Chinese urban 

residential stock from 2007 onwards is unknown. This creates a key barrier to forecasting 

possible future trajectories of the overall stock evolution and analysing stock-level energy 

consumption over the next several decades.  

 

This paper models the evolution of the urban residential stock in China since 2007 and then 

uses the estimated current status as the starting point for forecasting future evolution of the 

building stock over the medium to long term. The rest of the paper is organised as follows. 

Section 2 presents a review of literature closely relating to modelling Chinese building stock, 

identifies major issues associated with the methodological approaches taken, and justifies the 
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relevance and novelty of the present study. Section 3 develops the dynamic model for stock 

turnover and explains the concepts of BMA and its application to building stock turnover 

dynamics; Section 4 presents key results and discuss potential model applications and policy 

implications. Finally, section 5 summarises the study and accentuates the model's applicability 

from an international perspective. 

 Literature review 

Key to modelling the stock evolution is a turnover process driven by the dynamic interplay 

between: new construction, meeting incremental demand growth as a result of economic 

growth and rising living standards; existing buildings remaining in use but undergoing an 

ageing process; and old buildings, which are eventually demolished. In this context, building 

lifetime is a critical factor underlying the dynamic relationship between old and new buildings, 

as Chinese urban buildings are generally short-lived due to various factors, including quality 

of building materials, design standards, construction techniques and practices, maintenance 

and renovation, massive demolition as a result of rapid urbanisation and city rebuilding, etc. 

[10–14]. The short lifetime suggests a high turnover rate and great complexity and uncertainty 

associated with building stock characteristics, which have significant implications for stock-

wide energy consumption and emissions over the medium to long term. Massive construction 

and demolition incur significant amounts of embodied energy for building materials production, 

transportation, construction, demolition and disposal [15]. In 2017, the total embodied energy 

of buildings in China was 520 million tonnes of coal equivalent, or 15.2 EJ, comparable to the 

total primary energy of 28.2 EJ used in building operation in China [16]. Meanwhile, a high 

turnover rate implies lower risk of operational energy and carbon lock-in [17,18], as the 

building stock is rapidly replenished with energy efficient buildings while suboptimal old 

buildings are removed. These two arguments suggest a trade-off from the perspective of 

whole-life building energy, i.e. embodied plus operational energy. This clearly demonstrates 

the importance of building lifetime and stock turnover, which shall be adequately understood. 

 

Despite their fundamental impacts on the macro-level building energy with significant 

implications for China’s climate targets, building lifetime and stock turnover appear to have 

been an under-researched area. There are substantially less studies in this area than the wide 

range of building energy related topics, such as building physics, building materials, energy 

efficiency, building integrated renewable energy, indoor air quality, thermal comfort, etc. One 

of the first Chinese building stock models was developed by Yang and Kohler [10]. Their model 

set the existing stock in 2005 as the initial stock composed of several age cohorts. A cohort-

based approach was applied to define the average age of buildings to model the stock 

evolution on a five-year basis. Whilst no aging process of buildings was modelled, the 

influence of the probable building lifespans on mass flows and environmental impacts was 

pointed out. A similarly static approach was taken in the 3CSEP-HEB model [19], which 

assumed the Chinese building stock had an annual demolition rate of 0.5% and a retrofit rate 

of 1.4%. Taking a more dynamic perspective, Hu et al. [13] analysed the Chinese building 

stock by assuming a normal distribution function for building lifetime. Various scenarios of 

future demand for building materials such as steel and concrete for Chinese residential 

buildings were explored, both at the national level [20] and at the city level [21]. Shi et al [22] 

and Huang et al. [23] carried out similar studies investigating materials demand and 
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environmental impact of buildings and transport infrastructure stock in China, whose lifetimes 

were assumed to be normally distributed, with the average values in the range of 30 to 40 

years. In Hong et al. [24], the same method was applied to develop a building stock model to 

project the trajectories of demand for building materials and the corresponding embodied 

energy. Both residential and commercial buildings were assumed to follow normal distributions 

in terms of their lifetimes, with the standard deviation being set to be one third of the average 

value. Similarly, investigating the impact of technical progress and the use of renewable 

energy the in building sector, Shi et al. [25] applied the China TIMES model and represented 

the lifetime distribution of buildings using a normal distribution. Referring to Hong et al. [24], 

the model developed by Huo et al. [26] also used a normal distribution for lifetime distribution 

of residential buildings in China to estimate building floor area, energy consumption and 

energy intensity. 

 

Methodologically, the above assumptions on building lifetime and stock turnover have inherent 

limitations. Firstly, the use of a fixed annual demolition rate implies a mixing of the large volume 

of buildings of different ages in the stock. Referred to as cohort blending [27], this mixing 

means equal chance of buildings being demolished, regardless of their actual age and 

significant heterogeneity in their physical characteristics and socio-economic contexts. 

Secondly, whilst the use of a normal distribution attempts to explicitly account for lifetime 

uncertainties is comparatively reasonable, the critical issue is the questionable approach of 

specifying a normal distribution without calibration using empirical data. In previous studies, 

the mean, representing the average building lifetime, was assumed to take values in the range 

of 30 to 50 years, based on anecdotal evidence drawn from limited cases. The standard 

deviation was commonly set to be 30% of the mean, a largely arbitrary assumption. This 

approach resulted in inadequately substantiated shapes of the probability distributions that 

were used to describe the lifetime profile of buildings, thereby calling into question the 

estimated building stock turnover dynamics and the associated stock-level energy 

consumption and carbon emissions. 

 

A few recent studies have partially addressed the above methodological issue. Cai et al. [14] 

calibrated the average building lifetime using official statistics on annual new construction and 

estimated annual demolition and investigated its impact on water withdrawal energy 

consumption and carbon emissions. Using the same method, Cao et al. [28] estimated the 

Chinese building lifetime, the size of the building stock, and the associated stock and flow of 

building materials, such as cement, steel, wood, brick, etc. Zhou et al. [29] used Weibull 

distribution to represent the lifetime distribution of urban residential buildings. In addition to 

calibrating parameters and estimating stock size, Zhou’s aging chain modelling produced a 

detailed distribution of age-specific sub-stocks, i.e. a more disaggregated representation of 

the building stock than those of Cai et al and Cao et al. However, a common salient feature 

shared by these studies was the frequentist approach taken, which produced single point 

estimates of distribution parameters leading to a single profile of building lifetime. In this 

context, model parameters were treated as being deterministic and no uncertainty was 

considered. Moreover, the calibration of model parameters was conditional upon the model 

structure as chosen, without considering the uncertainty associated with the model per se, 

namely the probability of the chosen model being the true model given the observed empirical 

data. Neglecting the inherent uncertainties at the parameter level and model level, coupled 
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with having a limited amount of empirical data on historical floor area for calibration, is subject 

to high risk of undermining the robustness and reliability of the modelling results on building 

lifetime and stock turnover dynamics. 

 

Evidently, the deficiencies of previous studies in handling uncertainties suggest a critical 

research gap to be addressed. To this end, this study innovatively develops a building stock 

turnover model in a Bayesian framework to estimate the stock evolution pathway of Chinese 

urban residential buildings in a probabilistic manner. The Bayesian approach treats the 

parameters of the probability distribution models chosen to describe building lifetime profile as 

random variables and derives posterior distributions of the parameters by taking account of 

both prior knowledge about parameter values and the likelihood of observing empirical data 

given certain parameter values. For a given probability distribution model, this presents a full 

picture of the likely parameter space, thus enabling a good understanding of the global shape 

of the distribution of the parameter. Such a distribution allows parameter uncertainties to be 

propagated through to the emergent behaviours of model outputs, such as total building stock 

size. Moreover, in addition to model-specific parameter uncertainties, a Bayesian approach 

allows model uncertainty to be estimated. Through Bayesian Model Averaging (BMA), 

predictions made by individual models are combined in proportion to posterior model 

probabilities. This means the creation of a BMA model ensemble, which involves a weighted 

average of the predictions from a number of models, with the weights being equal to the 

probabilities that the models are the true model given the observed data. BMA can avoid the 

situation where inferences based on an individual candidate model are overstated, and 

decision-making based on predictions is subject to higher risk than expected [30,31]. 

 

From a policy-making perspective, a probabilistic model offers the ability to generate 

probability distributions of different potential outcomes of policy scenarios. This is important in 

the context of analysing the decarbonisation of the generally short-lived Chinese buildings, 

where there is likely to be a strategic trade-off between operational and embodied energy due 

to factors such as massive construction and demolition, strengthening design codes for 

improved energy efficiency, scaled-up energy-related retrofits, technological advances, and 

so on. Taking a Bayesian approach, a probabilistic model incorporating building stock turnover, 

energy and carbon will enable future research into the probability that one policy, e.g., 

extending building lifetime to avoid embodied energy, would yield a more favourable outcome 

of stock-level decarbonisation as compared to another policy, e.g. accelerating stringency of 

new building design standards. Improving our understanding of these trade-offs is the 

overarching objective that motivates this study as an integral part of further research involving 

a fully-fledged building energy model.  

 

Based on the above considerations, this study, as a first-of-its-kind attempt, applies BMA to 

develop a probabilistic dynamic model in order to estimate Chinese urban residential stock for 

the recent historical period of 2006 to 2017 and further forecast the stock development 

trajectories through 2100. The value of this study goes beyond filling the gap in quantifying 

the uncertainties in building stock turnover dynamics in Chinese context. It contributes an 

innovative methodological approach to the general field of building stock modelling. Its 

generality, flexibility and transparency make it potentially applicable to a wide variety of 

geographical contexts. It is particularly relevant and useful to countries experiencing rapid 
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urbanisation and massive construction, such as developing countries in South and Southeast 

Asia [32–34]. 

 

 Methodology 

 Building stock turnover model 

Estimating total building stock size requires understanding and modelling the stock turnover, 

which is characterised by the stock-level dynamics of construction of new buildings as inflow 

into the stock and demolition of old buildings as outflows from the stock. By the end of a year 

t, the total volume of demolition that year is the sum of all existing buildings constructed in all 

previous years that have reached the end of their lifetimes in year t. The building stock is 

composed of new buildings constructed in year t and those buildings which were previously 

constructed but have not reached the end of their lifetimes6.  

 

Critical to the turn-over dynamics of building stock is building lifetime. Despite design lifetime 

required by building design regulations, often there is a lack of authoritative statistics relating 

to actual building lifetime data, particularly in developing countries. At a city or even country 

level, given the huge volume of buildings and significant heterogeneity in terms of their 

physical characteristics and socio-economic contexts, it is necessary to consider the 

uncertainties associated with building lifetime. It is unrealistic to assume that a cohort of 

buildings, i.e. those constructed in a given year, would be in service for exactly the same period 

and then demolished simultaneously. In the Chinese urban context, buildings are generally 

short-lived due to various factors, including quality of building materials, design standards, 

construction techniques and practices, maintenance and renovation, inappropriately 

accelerated demolition as a result of rapid urbanisation and city rebuilding, etc. [10,11]. While 

the degrees to which different factors play out are context-specific and time variant and 

therefore may differ significantly, the explicit direct outcome is a fast turn-over of building stock 

and therefore generally short lifetimes of the buildings thereof. Thus, building age can be used 

as a proxy variable to represent the impact collectively made by these underlying factors on 

demolition probability.  

 

This paper proposes to apply the concept of survival analysis [35,36] to estimating building 

lifetime. It uses the probability density function (PDF) of a parametric survival model to 

approximate the likely lifetime distribution profile of a cohort of buildings built over a twelve-

month period, so as to recognise and represent the uncertainties associated with factors 

collectively influencing lifetime of buildings. Thus, in a given year t, the proportion of 

demolished buildings in this cohort of buildings is modelled based on a hazard function. 

Conceptually, the hazard function represents the conditional probability that a building will 

 
6 We acknowledge that a building may be disused functionally but still not demolished physically. Since 

the ultimate interest of modelling building stock turnover is in energy consumed by buildings, a 

functionally disused building does not consume energy anymore and therefore is considered equivalent 

to a physically demolished building from an energy perspective. Hence, in the rest of this study, 

demolition is used to refer to either physical demolition or functional disuse of buildings. 
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‘expire’ in that year t, provided that it has successfully survived to the previous year t-1. 

Mathematically, the hazard function is the ratio of the lifetime PDF to the complement of 

lifetime cumulative distribution function (CDF). 

 

Applying the above concept, the total stock in year t consists of a series of substocks of 

different ages: 

 

𝑆𝑡𝑜𝑐𝑘𝑡 = ∑ 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[𝑡 − 𝑗]

𝑡

𝑗=𝑡0

(1) 

 

Where 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[𝑡 − 𝑗] represents buildings surviving in year t that are (t-j) years old. For new 

buildings constructed in year t, they are 0 years old and therefore denoted by 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[0].  

 

The aging process undergone by any cohort of buildings is accompanied with annual 

demolition determined by age-specific hazard rates, H(age). Therefore, the annual total 

amount of demolition in year t is the sum of age-specific demolition of substocks at all ages. 

 

 

𝐷𝑒𝑚𝑜𝑙𝑖𝑡𝑖𝑜𝑛𝑡 = ∑ 𝐻(𝑡 − 𝑗)𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[𝑡 − 𝑗]

𝑡

𝑗=𝑡0

(2) 

 

 

For a (t-j)-year-old substock in year t, its volume is determined by the aging process that it has 

undergone since it was constructed in year j. 

 

𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[𝑡 − 𝑗] = [∏(1 − 𝐻(𝑘))

𝑡−𝑗

𝑘=0

] 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑗[0] (3) 

 

 

Therefore, equation (1) can be re-written as: 

 

𝑆𝑡𝑜𝑐𝑘𝑡 = ∑ 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[𝑡 − 𝑗]

𝑡

𝑗=𝑡0

 

= ∑ {[∏(1 −𝐻(𝑘))

𝑡−𝑗

𝑘=0

] 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑗[0]}

𝑡

𝑗=𝑡0

(4) 

 

 

 

In above equation (4), the age-specific hazard rate H(k) is determined by the parametric 

survival model chosen. Depending upon the specification, the hazard function of a survival 

model may or may not have a closed form expression.  
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The aging process described by the above equations can be visually represented by the model 

developed in Vensim, a commercial software for System Dynamics [37], as shown in Figure 

1. As shown, a series of cascading sub-stocks of buildings form an aging chain, with each sub-

stock representing a particular age group of buildings. The age group duration represents the 

time length that buildings in use reside in a sub-stock before shifting to the immediately next 

substock in the chain. With age group duration set to be 1 year, the chronological aging 

process is discretized, i.e. each sub-stock represents buildings within a one-year age group. 

This level of granularity offers a detailed representation of substocks characterised by 

heterogeneity with respect to age (and energy-related properties, provided that additional 

layers are added to the model). This therefore enables separately tracking the aging process 

and experimenting with policy interventions targeting buildings of specific age groups. For 

example, given a large stock consisting of residential buildings constructed over the past 40 

years, a policy-maker may want to know how buildings constructed in 2010 have been 

performing in terms of energy consumption from 2011 to 2019, what the building stock in 2019 

looks like in terms of the composition of buildings of different ages and the corresponding 

energy performance, what would be the possible trajectories of stock-wide average energy 

intensity from 2020 to 2030 if an energy efficiency retrofit programme targeting buildings older 

than 20 years is implemented in 2020, and so on. 

 

 

 
 

Figure 1: Aging chain with explicit modelling of sub-stock specific demolition 

 

 

 Bayesian modelling  

 Statistical model for historical stock 

As described by equation (4), the deterministic component of the overall statistical model is 

the total building stock as the function of unknown parameters 𝜃  of a chosen parametric 

survival model, e.g. Weibull distribution, and the known annual new cohort of buildings 
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constructed over the historical period. This can be denoted by a function 𝑓(𝜃, 𝑡) . The 

probabilistic component of the model is represented by an error term 𝜀𝑡, which is assumed to 

be normally distributed with mean zero and unknown variance 𝜎2, i.e. 𝜀𝑡  ~ 𝑁(0, 𝜎
2). 𝑓(𝜃, 𝑡) 

describes the expectation of modelled building stock. Therefore, in the Bayesian framework, 

the total stock can be described by the overall probabilistic model as follows: 

 

𝑆𝑡𝑜𝑐𝑘𝑡 = 𝑓(𝜃, 𝑡) + 𝜀𝑡 (5) 

 

 Bayesian model inference 

In the context of the statistical model, let D represent empirically observed data of total stock, 

𝑦 , and annual new buildings, 𝑥 , for the period of 1978 to 2006, i.e. 𝐷 = {(𝑥𝑖, 𝑦𝑖), 𝑖 =

1978,1979,… ,2006}. According to Bayes’ theorem, the posterior probability density 𝑝(𝜃|𝐷), 

given the data D, is calculated as follows: 

 

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃)𝑝(𝜃)

𝑝(𝐷)
=

𝑝(𝐷|𝜃)𝑝(𝜃)

∫ 𝑝(𝐷|𝜃)𝑝(𝜃)𝑑𝜃
(6) 

 

where 𝑝(𝜃)  is the prior distribution of θ, representing subjective prior knowledge about θ. 

𝑝(𝐷|𝜃) is the likelihood function, which can be viewed as a function of θ given the empirically 

observed data D which is considered fixed. It represents the likelihood that the given set of 

empirically observed data D is explained by the model with possible parameter values. 𝑝(𝐷) 

is the marginal likelihood, which is an integration of 𝑝(𝐷|𝜃) over all possible values of θ across 

its space and therefore is not a function of θ, but a constant. This proportionality constant plays 

the role of normalizing the posterior density to ensure it integrates to 1. 𝑝(𝐷) is also known as 

model evidence, because it provides evidence for a candidate model, which is critical in 

selecting and averaging models as discussed later.  

 

The posterior distribution 𝑝(𝜃|𝐷)  fully describes the uncertainty associated with the 

parameters. Essentially it updates the prior knowledge about the parameters in light of the 

empirical data. Generally, it is difficult or not possible to analytically express the posterior 

distribution. The solution is to instead simulate sample draws from the posterior distribution, 

such that the values of these samples are distributed approximately according to the posterior 

distribution of the parameters of interest. The samples enable calculation of point estimates of 

the parameters, such as mean, median, or mode. More importantly, the samples of parameters 

enable drawing samples from predictive distributions associated with model outputs, e.g. the 

annual total building stock as the high-level emergent behavior of the dynamic building stock 

model, thus facilitating policy scenario analysis. Methodologically, this is realised using Markov 

chain Monte Carlo (MCMC) algorithm, as introduced later. 

 

 Posterior predictive distribution 

With the posterior distribution 𝑝(𝜃|𝐷), it is possible to make inferences about the total stock 

for a given year during the period of 2007 to 2017, an unknown observable denoted as �̃�, 
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given the known annual new buildings for the same year, denoted as 𝑥∗ . This leads to the 

posterior predictive distribution of �̃�: 

 

p(�̃�|𝑥∗, 𝐷) = ∫𝑝(�̃�|𝑥∗, 𝜃)𝑝(𝜃|𝐷)𝑑𝜃 (7) 

 

This equation suggests that the posterior predictive distribution is derived by marginilising the 

likelihood function 𝑝(�̃�|𝑥∗, 𝜃) over the entire set of parameters, with each point in the space of 

parameters weighted according to its posterior probability given the empirically observed data. 

 

 Bayesian Model Averaging 

The above posterior predictive distribution is conditional upon a choice of model M, i.e. a 

building stock model employing a particular parametric survival model, e.g. Weibull distribution. 

The equation can be written more explicitly as: 

 

  

𝑝(�̃�|𝑥∗, 𝑀, 𝐷) = ∫𝑝(�̃�|𝑥∗, 𝜃,𝑀)𝑝(𝜃|𝐷,𝑀)𝑑𝜃 (8) 

 

 

There are multiple choices of parametric survival model, each of which may characterise the 

dynamics of building stock turnover. Candidates include Weibull, Lognormal, Gamma, etc. Let 

𝑀𝑘 denote a building stock turnover model using a plausible survival model k specified by 

parameter vector 𝜃𝑘, and let M = {M1, M2, …., Mk} denote the model space under consideration. 

This creates a model ensemble, which, when making predictions, takes into account the 

uncertainties associated with not only model-specific parameters but also the models per se. 

Now, the posterior predictive distribution of total building stock for the period of 2007 to 2017, 

�̃�, is calculated as: 

 

𝑝(�̃�|𝑥∗, 𝐷) = ∑𝑝(�̃�|𝑥∗, 𝑀𝑘 , 𝐷)𝑝(𝑀𝑘|𝐷)

𝐾

𝑘=1

(9) 

 

Where 𝑝(�̃�|𝑥∗,𝑀𝑘 , 𝐷) is the posterior predictive distribution under model Mk given data D, and 

𝑝(𝑀𝑘|𝐷) is the posterior model probability (PMP), which is also referred to as model weight. 

Hence, the posterior distribution of �̃�  predicted by the model ensemble, 𝑝(�̃�|𝑥∗, 𝐷) , is 

effectively the average of the posterior predictive distribution under each of the candidate 

models in the model space, weighted by their respective PMPs. 

 

The PMP of model Mk can be interpreted as the probability of model Mk being the true model 

predicting �̃� , given the observed data D, thus reflecting the extent to which Mk fits the 

observations as compared to other candidate models in the model space. PMP is given by: 

 

𝑝(𝑀𝑘|𝐷) =
𝑝(𝐷|𝑀𝑘)𝑝(𝑀𝑘)

∑ 𝑝(𝐷|𝑀𝑗)𝑝(𝑀𝑗)
𝐾
𝑗=1

(10) 
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Where 𝑝(𝑀𝑘) is the prior probability of model Mk being the true model, allowing the existing 

prior knowledge about the plausibility of model Mk  to be specified explicitly, and 𝑝(𝐷|𝑀𝑘) is 

the marginal likelihood (or model evidence) of model Mk , which is given by 

 

𝑝(𝐷|𝑀𝑘) = ∫𝑝(𝐷|𝜃𝑘 ,𝑀𝑘)𝑝(𝜃𝑘|𝑀𝑘)d𝜃𝑘 (11) 

 

  

Where 𝑝(𝐷|𝜃𝑘,𝑀𝑘) is the likelihood of model Mk given observed data D, and 𝑝(𝜃𝑘|𝑀𝑘) is the 

prior probability density of the parameters 𝜃𝑘  under model Mk. In fact, 𝑝(𝐷|𝑀𝑘)  is the 

denominator in the above equation (6) for calculating the posterior probability density of 

parameters 𝜃𝑘 under model Mk, as given by 

 

𝑝(𝜃𝑘|𝐷,𝑀𝑘) =
𝑝(𝐷|𝜃𝑘 ,𝑀𝑘)𝑝(𝜃𝑘|𝑀𝑘)

∫ 𝑝(𝐷|𝜃𝑘 ,𝑀𝑘)𝑝(𝜃𝑘|𝑀𝑘)d𝜃𝑘
= 
𝑝(𝐷|𝜃𝑘 ,𝑀𝑘)𝑝(𝜃𝑘|𝑀𝑘)

𝑝(𝐷|𝑀𝑘)
(12) 

 

 

Compared with equation (6), the above equation (12) explicitly applies subscript k to reflect 

that both the priors of model-specific parameters 𝜃𝑘 and the likelihood function of the observed 

data D are conditional on the particular model Mk in the model space. 

 

Based on the above, the posterior mean of �̃�, as predicted by the model ensemble, can be 

calculated as follows: 

 

𝐸[�̃�|𝑥∗, 𝐷] = ∑𝐸[�̃�|𝑥∗, 𝑀𝑘 , 𝐷]𝑝(𝑀𝑘|𝐷)

𝐾

𝑘=1

(13) 

 

 

Clearly the BMA model ensemble prediction is essentially the average of individual predictions 

weighted by the probability that an individual candidate model is true given the observed data. 

BMA model ensemble leads to a more spread posterior distribution of y than an individual 

candidate model does. This avoids the situation where inferences made based on an 

individual candidate model are overstated and decision-making based on predictions is much 

riskier than expected [30,31,38,39]. 

 

 Model space 

In general, a range of parametric survival distribution functions are available to describe the 

survival process in various fields [36,40,41]. However, literature on survival analysis or lifetime 

data analysis on buildings is limited. A survey on buildings in the Netherlands found that 

empirical survival probabilities of buildings were well approximated by Weibull distribution 

(OECD 2009). Miatto et al. [44] tested various PDFs and found that the lognormal distribution 

offered the best fit to  lifespans of buildings in Nagoya and Wakayama, Japan, where buildings 
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were short-lived, with average lifespans shorter than 30 years. Zhou et al. [29] applied the 

Weibull distribution to approximate lifetime uncertainties of Chinese urban residential buildings. 

From an economic perspective, buildings can be regarded as a type of capital asset, and 

accordingly building stock can be regarded as a type of capital asset, and accordingly building 

stock can be regarded as capital stock [42,43]. Hence, a range of PDFs that have been used 

as a proxy for service lives and retirement/discard patterns of capital stocks may be applied 

to buildings, such as log-normal, Weibull, Gamma, and so on [42,43,45–49].  

 

In this paper, the distribution functions used for approximating the lifetime distribution of 

Chinese urban residential buildings are Weibull, Lognormal, Loglogistic, Gamma and Gumbel 

distributions. Each distribution can characterise the turnover dynamics of the building stock, 

thereby representing a candidate model 𝑀𝑘  in the model space M. The PDFs of these 

distributions are given in Table 1. Specifying the PDF of a distribution allows the CDF, survival 

function and hazard function of the distribution to be ascertained. 

 

Table 1: Five candidate survival distribution functions 

Distribution Probability density function Parameters Priors 

Weibull 

 

𝑓(𝑥) = (
𝛼𝑥𝛼−1

𝜆𝛼
)𝑒

(−(
𝑥
𝜆
)
𝛼
)
 

 

Shape α > 0 

Scale λ > 0 

α ∼ uniform(1,10) 

λ ∼ uniform(1,100) 

Lognormal 

 

𝑓(𝑥) =
1

𝑥√2𝜋𝜎′
𝑒
−
1
2[
𝑙𝑛𝑥−𝜇′

𝜎′
]
2

 

 

𝜇′ = 𝑙𝑛 [
𝜇2

√𝜎2+𝜇2
] ,  

 𝜎′ = √ln [1 + (
𝜎

𝜇
)
2
] 

 

Mean μ > 0 

Standard 

deviation σ > 0 

μ ∼ uniform(1,100) 

σ ∼ uniform(1,100) 

Loglogistic 

 

𝑓(𝑥) =
𝑒
ln(𝑥)−𝜇

𝜎

𝜎𝑥(1 + 𝑒
ln(𝑥)−𝜇

𝜎 )2
 

 

Scale μ > 0 

Shape σ > 0 

μ ∼ uniform(1,100) 

σ ∼ uniform(1,100) 

Gamma 

 

𝑓(𝑥) =
1

𝜆Γ(𝛼)
(
𝑥

𝜆
)𝛼−1𝑒

−
𝑥
𝜆 

 

Scale λ > 0 

Shape α > 0 

λ ∼ uniform(1,100) 

σ ∼ uniform(1,100) 

Gumbel 

 

𝑓(𝑥) =
1

𝜎
𝑒−(

𝑥−𝜇
𝜎
)𝑒−𝑒

−(
𝑥−𝜇
𝜎

)

 

 

Scale μ > 0 

Shape σ > 0 

μ ∼ uniform(1,100) 

σ ∼ uniform(1,100) 
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 Model priors and model parameter priors  

Prior probabilities of models reflect the prior knowledge, or belief, that a specific model is the 

true model in the domain concerned. Eliciting an appropriate prior is a non-trivial task in any 

Bayesian setting, and such difficulties are compounded in BMA because a probability measure 

for the model space, which is a more abstract parametric space, is not obvious in principle 

[31]. 

 

Whilst informative priors are expected to benefit model development and improve predictive 

performance, often non-informative priors have to be used due to little prior knowledge about 

the relative plausibility of the models considered. As a simple but reasonable neutral choice, 

it can be assumed that all candidate models in the model space are equally likely a priori 

[30,38]. This means applying an uniform distribution over the model space, so that 𝑝(𝑀𝑗) =
1

𝐾
, 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝐾 . No model is considered more likely a priori than any other one. The 

consideration is to let the observed data carry all the information. This is the most commonly 

adopted practice in defining model priors in BMA settings [31]. On this basis, the afore-

mentioned five distributions of this study are assumed to have the equal prior probability equal 

to 0.2. This leads to the prior model probabilities being cancelled out and the PMP of a 

candidate model being proportional to its model evidence, namely, marginal likelihood. 

 

The same consideration is applied to defining prior distributions of model-specific parameters. 

For any of the five candidate models, there is little prior information about its model-specific 

parameters. Hence it is straightforward to specify non-informative priors so as to allow the 

posteriors to be informed by data. As shown in Table 1, the priors of the model-specific 

parameters are all assumed to be uniformly distributed over their reasonable ranges in the 

context of generally short lifetimes of urban residential buildings in China. 

 

 MCMC sampling and posterior distribution calculation 

MCMC is used to simulate the posterior distribution of a model-specific parameters. The 

principle is to draw values of a parameter vector 𝜃 from approximate distribution and then 

correct those draws to better approximate the target posterior distribution. Sampling is 

performed iteratively in such a way that at each step of the process it is expected that draws 

are made from a distribution that becomes closer to the target posterior distribution [50]. The 

sampling process is sequential and the draws create an ergodic Markov chain, which, after a 

large number of iteration steps, evolves through the parameter space, becomes stationary 

and converges to the target posterior distribution. Subsequent model inference can be made 

based on samples from this process much as based on samples from the target posterior 

distribution [51]. 

 

This study uses the Metropolis-Hastings algorithm, which is well established amongst 

available MCMC algorithms. At the start of iteration t, a candidate vector θ* is generated from 

θ(t-1) through a proposal distribution 𝑓(𝜃∗|𝜃(𝑡−1)), which is also known as a jumping distribution. 

The probability of θ* being accepted to become θ(t) is: 
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𝑟 = 𝑚𝑖𝑛

{
 
 

 
 

1,

𝑝(𝜃∗|𝑑𝑎𝑡𝑎)
𝑓(𝜃∗|𝜃(𝑡−1))
⁄  

𝑝(𝜃(𝑡−1)|𝑑𝑎𝑡𝑎)

𝑓(𝜃(𝑡−1)|𝜃∗)
⁄

}
 
 

 
 

(14) 

 

 

The acceptance probability r means that if the result is higher than 1, r is set to 1, the candidate 

θ* is accepted and the transition from θ* to θt
 is made. Otherwise, if the result is lower than 1, 

the candidate θ* is accepted with probability equal to r and rejected with probability equal to 1-

r. When accepted, the transition from 𝜃∗ to 𝜃(𝑡) is made. When rejected, no move at iteration 

t is made, hence 𝜃(𝑡) = 𝜃(𝑡−1), meaning that the chain is updated using the current value. 

 

The proposal distribution 𝑓(∙) is chosen to be a random walk proposal, where θ* is selected by 

taking a random perturbation ε around the current value θ(t), i.e. 𝜃∗ = 𝜃(𝑡) + 𝜀. The random 

vector ε is drawn independently of θ(t) and centered on zero. As a common setting, ε is a 

normal distribution with mean zero and variance set to obtain efficient jumping algorithm 

[50,52]. In this regard, this study tunes the algorithm by using adaptive sampling, which 

generates new candidate parameters with a proposal covariance matrix that is estimated from 

the covariance matrix of the parameters generated so far, with a scaling factor of 2.42/d, where 

d is the number of parameters [53,54]. 

 

 Marginal likelihood calculation 

Generally, the marginal likelihood is not analytically tractable and therefore has to be 

approximated using numerical methods. Typical Monte Carlo sampling methods include naïve 

Monte Carlo, Importance Sampling (IS), Harmonic Mean (HM), Generalised HM, and Bridge 

Sampling. The Naïve Monte Carlo is straightforward and in principle unbiased, but numerically 

inefficient and unstable if the posterior distribution is peaked relative to the prior method 

[31,55,56]. IS may overcome these issues by having an importance density with fatter tails 

than the posterior distribution [56,57]. HM uses the posterior distribution as the importance 

density. This results in the marginal likelihood being equal to the posterior harmonic mean of 

the likelihood. Despite its convenience and popularity, HM has been criticised extensively due 

to numerical instabilities and overestimation of the marginal likelihood [55,58,59]. Generalised 

HM, a more stable version of HM, can be viewed as the reciprocal IS [60]. Thus, for the reason 

analogous to IS, this method also requires the importance density to be finetuned to avoid 

unbounded variance. Specifically, it requires importance density to have thinner tails than the 

posterior distribution [31,56,61]. Bridge Sampling is a general case of the afore-mentioned 

methods. Compared to IS and Generalised HM, it is more robust to tail behaviours of the 

proposal distribution (conceptually similar to importance density) relative to posterior 

distribution and thus avoids large or even infinite variances of estimators [56,60,62,63]. This 

study uses Bridge Sampling to approximate the marginal likelihood of each of the five 

candidate models. 

 

 



14 

 

 Forecasting future building stock turnover 

Conceptually, the possible building stock evolution trajectories in the future are assumed to be 

subject to the same turnover process as described in Section 2.1, i.e. a dynamic interplay 

between construction of new buildings, aging of existing buildings in the stock, and demolition 

of old buildings reaching the end of their lifetimes. The key difference is that annual 

construction is an exogenous variable in the stock turnover model when predicting the recent 

stock evolution from 2007 to 2017, whereas it has to be taken as an endogenous variable in 

the model when forecasting future stock evolution, since future construction is unknown. 

Methodologically, since the annual construction of new buildings, existing stock and annual 

demolition are related to each other, there is a need for some exogenous variables to be 

included in the model to play the role of driving the evolution of the stock. Here the future 

trajectories of urban population and per capita floor area (PCFA) are used to establish 

expected demands of total urban residential building stock, which will be met by the net effect 

of construction and demolition. The mathematical relationships are given by the equations 

below, which, together with the equations in Section 2.1, formulate the mechanism driving the 

future stock evolution. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑜𝑐𝑘𝑡 = 𝑈𝑟𝑏𝑎𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡 ∙ 𝑃𝐶𝐹𝐴𝑡 (15) 

 

𝑁𝑒𝑤𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑡 = (𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑜𝑐𝑘𝑡 − 𝑆𝑡𝑜𝑐𝑘𝑡) + 𝐷𝑒𝑚𝑜𝑙𝑖𝑡𝑖𝑜𝑛𝑡 (16) 

 

where the new construction in year t is 0 years old and therefore equivalent to 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[0], 

which is the youngest substock amongst all substocks in 𝑆𝑡𝑜𝑐𝑘𝑡.  

 

The first of the two underlying driving factors, urban population, is determined in turn by total 

population and urbanisation rate. The historical data and future projection of China’s total 

population are sourced from the official statistics of the Chinese government [64] and the 

World Population Prospects by the United Nations [65]. As for the urbanisation rate, China has 

been experiencing consistently rapid urbanisation over the past few decades [64] and such a 

trend is anticipated to continue in the future [66,67]. The projection by World Urbanization 

Prospects 2014 indicated that China would reach a urbanisation rate of 68.7% by 2030, 72.8% 

by 2040 and 75.8% by 2050 [68]. A joint research by the World Bank and the Development 

Research Centre of China’s State Council pointed out that the inflection of China’s 

urbanization rate, namely the highest annual rate of urbanization rate change, already 

occurred in 2008 and the rate would surpass 62% in 2020, 70% in 2030 and 76% in 2050 

respectively [69]. It is therefore considered reasonable to project the future development trend 

of urbanisation rate based on historical trajectory and the expected saturation level over the 

long term. The generally S-shaped curve of the overall trend justifies the use of a logistic 

growth model. 

 

 

𝑈𝑟𝑏𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑡 =
𝑈𝑟𝑏𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑎𝑘
1 + 𝑒𝑎+𝑏(𝑡−𝐵𝑎𝑠𝑒𝑌𝑒𝑎𝑟)

+ 𝜀𝑡 (17) 
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In the above equation, BaseYear is taken as 1978, the milestone year marking the beginning 

of nation-wide reform and opening-up policy. UrbanisationPeak is the upper asymptote, 

representing the expected saturation level of urbanisation over the long term. 𝜀𝑡 is the error 

term, which is assumed to be normally distributed with mean zero and unknown variance 𝜎2, 

i.e. 𝜀𝑡  ~ 𝑁(0, 𝜎
2). In addition, a and b are parameters determining the shape of the Logistic 

curve. Using urbanisation rate data available from the official statistics of Chinese government 

[64] and the World Urbanisation Prospects 2014 [68], the vector of unknown parameters of 

the urbanisation model, including UrbanisationPeak, a, b and 𝜎 ,  can be estimated through 

MCMC. 

 

The other driving factor, PCFA, is modelled by applying a Gompertz growth model. Both 

Gompertz and Logistic belong to the Richards family of sigmoidal growth models. Different 

from Logistic function, the curve of Gompertz function is not symmetric about its point of 

inflection, which is reached early in the growth trend. The future value asymptote on the right 

hand is approached much more gradually by the curve than the lower value asymptote on the 

left side [70–72]. Both Logistic and Gompertz models have been used to model PCFA 

[4,23,73–75]. Li and Xu [73] and Xu and Liu [75] argued that a Logistic model is more suitable 

for describing growth at economy take-off stage whereas a Gompertz, showing a more 

apparent increasing trend at a later stage, can better reflect the development of rising demand 

for urban housing along with the increase of per capita income. This study uses a Gompertz 

model, which can be defined as follows: 

 

 

𝑃𝐶𝐹𝐴𝑡 = 𝑃𝐶𝐹𝐴𝑝𝑒𝑎𝑘𝑒
−𝑒𝑎(𝑡−𝐵𝑎𝑠𝑒𝑌𝑒𝑎𝑟)+𝑏  + 𝜀𝑡 (18) 

 

 

where PCFApeak is the expected saturation level of PCFA over the long term; a and b are 

parameters determining the shape of the Gompertz curve; and 𝜀𝑡  ~ 𝑁(0, 𝜎
2) is the error term. 

 

In estimating the vector of parameters of the Gompertz model, a challenge is the lack of 

reliable PCFA data. The historical PCFA data published by various official sources have been 

found to be over-estimated due to sampling representativeness issues [73,76–79]. This 

research takes an alternative approach. Samples are drawn from the posterior predictive 

distribution of the total stock for the period of 2006 to 2017 and each sample, comprising 12 

data points, is divided by official data on annual urban population to get a sample of PCFA (12 

data points) of the same period. This way, a number of samples of PCFA are obtained. In 

addition, to increase the number of data points and also to take into account the importance 

of possible future policy targets, additional data points for future years are added to each 

sample of PCFA. Literature suggests that there is a considerably large variation in possible 

future PCFA levels, ranging from 24 to 60 m2 per capita. Peng, Yan and Jiang [80] indicated 

that residential building floor area in urban China should remain at 24m2 per capita in order to 

control total building energy use. The Energy Research Institute (ERI) under China’s National 

Development and Research Commission predicted that total floor area of urban residential 

buildings in China would reach 43.953 billion m2 by 2030, corresponding to 42.7 m2 per capita, 



16 

 

a level similar to those in developed countries in 2007 [81]. IEA's Energy Technology 

Perspectives 2015 forecasted that residential floor area in China would reach 52m2 per capita 

in the timeframe of 2030 to 2050 [82]. A joint report by IEA and THUBERC estimated that 

average floor area per person could increase to 58m2 by 2050, although this level was 

considered unrealistic given high density levels in China [83]. THUBERC [79] argued that 

urban residential floor area over the medium to long term should not exceed 35 m2, thereby 

curbing total floor area of urban residential buildings below 35 billion m2. According to a recent 

study on China's deep decarbonization led by China's National Centre for Climate Change 

Strategy and International Cooperation [84], residential floor area per capita in China should 

be kept at the level of approximately 36 to 37 m2 from 2030 to 2050. Such a large variation 

suggests high uncertainties associated with PCFA and therefore justifies the forecast of future 

trajectories in a Bayesian framework. Taking these estimates from the existing literature into 

consideration, four additional data points reflecting possible future PCFA levels, 35m2 for 2030, 

40m2 for 2040, 45m2 for 2050 and 50m2 for 2080, are added to the 12 data points of each 

PCFA sample to estimate the posterior distributions of the four parameters of Gompertz model 

(PCFAPeak, a, b and 𝜎) through MCMC. Samples are drawn from the results from each MCMC, 

which is based on each sample of PCFA comprising 16 data points, and then are combined to 

obtain the posterior distributions of the four parameters. 

 

 

 

Figure 2: Extended building stock turnover model using Weibull distribution 

A graphical representation of the above described future stock dynamic turnover model is 

shown in Figure 2. It should be noted that the model structure in Figure 1 is reformulated to 

improve representation and analytical convenience as shown in Figure 2. The building stock 
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is a stack of a number of age-specific substocks that are implicitly represented. Each substock 

is subject to an age-specific demolition rate determined by the hazard profile derived from 

each of the five candidate parametric survival models. In this figure, a Weibull distribution is 

used as the survival model for illustration purpose. It should also be noted that each run of the 

model is based on a particular combined set of samples drawn from the posterior distributions 

of survival model parameters, the posterior distributions of the parameters of the Gompertz 

model for expected PCFA, and the posterior distributions of the parameters of the Logistic 

model for urbanisation rate. 

 

 Results and discussion 

 Posterior model probabilities (PMPs) 

Based on the methodology elucidated above, the posterior distributions of model-specific 

parameters of each candidate model, 𝑝(𝜃𝑘|𝐷,𝑀𝑘), were obtained using official statistics on 

total stock of urban residential buildings up to 2006. The primary data sources included China 

Statistical Yearbook and MOHURD’s Statistical Communique on Urban Housing. Then, the 

evidence of each candidate model, i.e. the marginal likelihood, was numerically estimated 

using bridge sampling technique, and the PMP was calculated (Table 2). 

 
Table 2: Prior and posterior probabilities of the five candidate models 

 
Model Prior PMP 

Weibull 0.2 0.219 

Lognormal 0.2 0.25 

Loglogistic 0.2 0.096 

Gumbel 0.2 0.42 

Gamma 0.2 0.015 

 

 Prediction of historical stock 

With each candidate model, the posterior predictive distribution of total stock over the period 

of 2007 to 2017, �̃�, was obtained through running the probabilistic stock turnover model using 

the posterior distributions of model-specific parameters, i.e. 𝑝(𝜃𝑘|𝐷,𝑀𝑘), and official statistics 

on annual new construction from 2007 to 2017. The posterior distribution of �̃� predicted by the 

BMA model ensemble is the PMP-weighted average of the posterior predictive distribution of 

�̃� under each candidate model in the model space. Operationally this was obtained by drawing 

samples from model-specific predictions with probabilities equal to the PMPs and then 

combining the samples. Figure 3 shows the 95% credible interval of posterior prediction of 

total stock by the BMA model ensemble. As expected, the total stock size was characterised 

by a continuously ascending pattern over time. The mean of the credible interval increased by 

33% over eight years from 17.7 billion m2 in 2010 to 23.6 billion m2 in 2017. Clearly the line 

representing the mean of credible interval exhibits a good fit with the estimate by the Annual 

Report on China Building Energy Efficiency [16], which was developed by Tsinghua University 
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Building Energy Research Centre (THUBERC) and is widely recognised as an authoritative 

report on the overall situation of building energy in China.   

 

 
Figure 3: 95% Credible interval of BMA ensemble’s posterior prediction of total building stock 

 

Due to the lack of official statistics on annual demolition, it is not possible to directly cross-

validate the modelling result using historical annual demolition data. In an indirect way, though, 

comparing the demolition estimated in this study with previous studies provides an alternative 

basis for evaluating the robustness of the modelling approach and results. According to 

THUBERC [85], the ratio of aggregated demolished buildings to aggregated newly constructed 

buildings over China’s 11th Five-Year Plan Period (2006 to 2010) was approximately 34%. In 

this study, using the mean of the posterior predictive distribution of the aggregated demolished 

buildings modelled over this period, this ratio is calculated to be 32%, very close to the 

THUBERC [85] estimate. In absolute terms, the mean of posterior predictive distribution of 

annual demolition of this study is of the same order of magnitude as previous studies. For 

example, for 2010, the annual demolition was estimated by this study to be 1.47 billion m2, 

approximately 1.3 billion m2 by [13], and approximately 1.7 billion m2 by [23]. 

 
Compared with a single point, deterministic estimate of annual stock size, the BMA approach 

taken by this study produces a profile for annual stock size, i.e. the posterior predictive 

distribution (Figure 4). This probabilistic estimate of annual stock size captures both models’ 

and the model-specific parameters’ uncertainties. Having depicted all possible pathways of 

stock evolution, it provides a full distribution of existing stock size per year and therefore helps 

to improve the reliability and robustness of not only the estimate of existing stock, but also the 

forecasting of future total stock which, as explained in previous sections, is a function of the 

existing stock, the underlying survival models and parameters, and expected future demand 

for housing area. The results of forecasting future stock are given in the next section. 
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Figure 4: Posterior predictive distribution of total stock (2012-2017)  

 
 

 Forecast of future stock 

Our forecasts of future stock turnover dynamics are based on posterior predictive distribution 

of total stock in 2017 and the interplay between new construction, demolition, existing stock 

and expected stock. Operationally, the System-Dynamics-based future stock turnover model 

has five versions, each of which is based on one of the five candidate survival models (Weibull, 

Lognormal, Loglogistic, Gumbel, Gamma). For each version, such as Weibull, a large number 

of combined samples are drawn from the posterior distributions of survival model-specific 

parameters, posterior distributions of vector of parameters of PCFA model, and posterior 

distributions of vector of parameters of urbanisation model. Using each sample of combined 

parameters, that particular version of stock turnover model is run to obtain a distinct trajectory 

of future stock evolution up to 2100. The trajectory reflects the stock’s underlying composition 

of age-specific substocks in each year. Upon completing running that particular version of 

stock turnover model using all the samples of combined parameters, the family of trajectories 

of future stock evolution together produce the distribution of the total stock size per year 
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corresponding to that particular version of the stock turnover model. By repeating this process 

for each version of the stock turnover model and then combining the version-specific family of 

trajectories in proportion to posterior model probabilities, the distribution of the total stock size 

corresponding to the BMA model ensemble is obtained. 

 

As shown in Figure 5, driven by rising urbanisation rate and expected demand for PCFA, the 

total stock steadily increases over the next two decades. From around 2040 onwards, while 

the total stock remains the general ascending trend, its growth starts to decelerate as the 

inflection point is being approached. The peak of the curve occurs around 2065, when the 

mean of the distribution of total stock size reaches 46.3 billion m2 and the 95% credible interval 

is in the range of 42.4 to 50.1 billion m2. After 2065, the total stock starts to shrink slowly. This 

is due to the projected decrease of total population around the same period, the effect of which 

outweighs the continuous (but decelerating) increase in urbanisation rate and PCFA. By 2100, 

the total stock is estimated to have a 95% credible interval of 39.1 to 47.3 billion m2. The 

probability distribution of annual total stock size in various years in presented in Figure 6. This 

figure offers a full picture of the probability distribution of the total stock size per year, as the 

uncertainties associated with not only model-specific parameter vector, but also the models in 

the model space are propagated through the emergent behaviours of the model outputs, 

namely, the dynamic evolution of the stock and the associated substocks. 

 

 

 

Figure 5: Posterior predictive distribution of stock trajectories from 2006 to 2100 
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Figure 6: Posterior predictive distribution of total stock in various years 

 

Underlying total stock is the dynamic evolution of the underlying age-specific substocks, which 

collectively form the total stock. The highly granular building stock turnover model developed 

through System Dynamics modelling offers additional insights into the composition of building 

stock through explicitly modelled building aging process. For each parameter vector in the 

parameter space of a candidate model in the mode space, the annual total stock is 

disaggregated into age-specific substocks, each of which goes through an aging process 

subject to age-specific demolition rate determined by the hazard function specified by this 

particular parameter vector of this particular candidate model. For each year, the substock of 

new buildings constructed in this year and the substocks of existing buildings at various ages 

that remain in use collectively create the age profile of the entire stock. For the year after, the 

stock’s age profile is updated due to new construction, aging and demolition. These on-going 

dynamics, which result in the turnover of the overall stock and detailed representation of age-

specific substocks, are fully captured in the dynamic model and, more importantly, are further 

characterised probabilistically by the BMA model ensemble through the posterior distributions 

of model-specific parameters and PMPs of candidate models. This allows us to obtain the full 

distribution of each age-specific substock in any given year and makes possible tracking and 

analysis of specific substocks. Figure 7 shows the posterior predictive distributions of 

substocks aged 10, 20, 30, 40, 50 and 60 years within the total stock in 2060. 
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Figure 7: Posterior predictive distribution of substocks at various ages in 2060  

 
Figure 8 and Figure 9 respectively show the distributions of annual construction of new 

buildings and annual demolition of old buildings obtained from the BMA model ensemble. 

Overall, future new buildings constructed per year are not expected to vary significantly from 

the recent historic levels. After experiencing a gradual increase from 2018 to 2025, the mean 

of annual new buildings maintains a generally stable level at approximately 1.5 billion m2 for 

two decades and then starts to progressively decrease and eventually approach 1 billion m2 

by 2100. Such a general trend is as expected, because annual new buildings, serving as the 

incremental part of the total stock, is predominantly influenced by the expected demand of 

total stock whose increase rate slows down over time. As for annual demolition, its curve 

shows a smoothly slowly ascending trend because a stock that builds up over time comes with 

an increasing aggregate of various amounts of demolished buildings at various ages. From 

2053 to 2100, the mean of annual demolition remains being in a relatively narrow range of 1.1 

to 1.2 billion m2 for nearly 50 years. The peak of annual demolition occurs around 2073 and 

2074, several years later than that of the total stock. The reason is that, from a stock-and-flow 

perspective, the demolition is an outflow from the stock with a time lag relative to the inflow. 

Whilst the annual demolition is made up of by a large number of age-specific demolition 

quantities corresponding to age-specific substocks, such a mathematical complexity does not 
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change the fundamental mechanism but only the extent of time lag, which is dependent upon 

building lifetime distribution. For both annual new buildings and annual demolition, their 

predictive distributions, as characterised by 50% and 95% credible intervals, reflect the 

uncertainties associated with the parameters of the Logistic model for urbanisation, the 

parameters of the Gompertz model for PCFA, the parameters of each of the five survival 

models for lifetime distribution and demolition probability, and the survival models themselves. 

 

 

 
Figure 8: Posterior predictive distribution of annual new buildings 

 

 

 

Figure 9: Posterior predictive distribution of annual demolition 
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 Implications for building stock energy modelling 

The value of establishing the BMA model ensemble and obtaining posterior predictive 

distributions of stock, sub-stocks, annual construction and annual demolition goes beyond 

forecasting the turnover dynamics of the residential stock per se. It has significant implications 

for further modelling and analysis of building energy consumption and carbon emissions at 

stock level.  

 

Firstly, the possible lifetime distribution profile specified by a parameter vector in the parameter 

space of a candidate model enables explicit estimate of annual construction of new buildings 

and demolition of old buildings, which are fundamental to quantifying the initial and demolition 

embodied energy and carbon incurred every year. The lifetime distribution enables a closer 

look at annualised embodied energy and carbon converted from the capital cost in embodied 

energy and carbon associated with future cohorts of new buildings, in the context of changing 

building materials and construction techniques and the resultant changing embodied energy 

and carbon intensities. The impact of potentially varying lifetime distribution on embodied 

energy and carbon, such as longer average lifetime and smaller variance, via planning policy 

or as a result of economic and environmental factors, can be examined.  

 

Secondly, model granularity at the level of age-specific building sub-stocks offers a detailed 

representation of the building stocks heterogeneity with respect to operational energy 

performance. With buildings identified as a key sector for energy savings, it is reasonable to 

expect that new buildings, particularly those in urban areas, will be built to higher standards of 

operational energy performance due to increasingly stringent design codes, on-going 

technological advances and improving operation and management practices. Separately 

tracking the aging process of different cohorts of buildings enables a holistic and in-depth 

understanding the dynamics of the stock composition of buildings with different operational 

performance and a detailed evaluation of the trajectories of stock-wide average operational 

energy intensity per m2. Explicitly modelling the aging process also provides analytical 

convenience to enable detailed policy experimentation, such as by targeting old buildings at 

different ages for different depths of energy-related retrofits, which shall make not only 

technical but also economic sense. 

 

Thirdly, more importantly, the ability to model the temporal stock dynamics enables the 

integration of embodied and operational dimensions of building energy and carbon. By 

simultaneously investigating both dimensions, it is possible to explore their relative importance 

in the context of future building sectoral developments in increasingly extensive production 

and use of green building materials, improving construction practice and building quality, 

strengthening design codes for new buildings, scaling up energy-related retrofits of existing 

buildings, possible policy considerations to manage aged buildings, etc. In so doing, a fuller 

understanding of stock-level lifecycle energy and carbon of urban residential buildings can be 

reached so as to better assist policy-makers in formulating policies aiming to promote energy 

savings and decarbonisation of buildings. 
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Across the three dimensions, the uncertainties associated with model-specific parameter 

vectors and candidate models, as fully captured by the BMA model ensemble, along with 

uncertainties of other parameters and input variables needed for modelling energy and carbon, 

can be propagated into the emergent stock-level outputs, such as annual total embodied 

energy and annual total operational energy of total stock. The full Bayesian approach and the 

resultant probabilistic distributions of stock-level outputs can mitigate the risk of potential over- 

or under-estimate that would otherwise be more likely to be produced by deterministic models. 

From a policy-making perspective, probability distributions of different potential outcomes of 

policy scenarios can be generated. This is particularly important in the context of analysing 

the decarbonisation of the generally short-lived Chinese buildings, where there is likely to be 

a strategic trade-off between operational and embodied energy due to the above-mentioned 

factors. For example, it would be useful to explore the probability that one policy, e.g. extending 

building lifetime to avoid embodied energy, would yield a more favourable outcome of stock-

level whole-life building energy consumption as compared to another policy, e.g. accelerating 

stringency of new building design codes to reduce operational energy. In this sense, this study 

creates a powerful modelling framework with enhanced robustness and reliability, thereby 

preparing a solid ground for more effectively experimenting and analysing policies aiming to 

decarbonise buildings in the broader context of curbing China’s economy-wide emissions. 

 

 Wider applicability of the modelling approach 

It is useful to accentuate the value of this study in a broader international context. This study 

contributes an innovative methodological approach to the general field of building stock 

modelling. The generality, flexibility and transparency of the approach enables its application 

in a wide variety of geographical contexts. It is particularly relevant and useful to countries 

experiencing rapid urbanisation and massive construction, such as developing countries in 

South and Southeast Asia [32–34]. Addressing building energy and carbon emissions has 

been emphasized as a key climate change mitigation strategy in the Nationally Determined 

Contributions (NDCs) of these countries [86,87]. Correspondingly, building energy is also 

amongst the focus areas on the development agenda of multilateral and bilateral donor 

agencies providing loans, grants and technical assistance to these countries. The modelling 

approach and its application in the Chinese context as elaborated in this paper is well placed 

to provide a useful reference for these countries and donor agencies to take stock of their 

existing buildings, forecast possible stock evolution pathways and evaluate stock-level energy 

consumption and carbon emissions under different policy and intervention scenarios. 

 

 Conclusions 

A good understanding of building stock turnover dynamics is a fundamental prerequisite to 

sensible modelling of stock-level building energy consumption to better inform policy-making. 

We present a novel modelling approach to estimating recent historical total stock of urban 

residential buildings in China and also to forecasting future trajectories of the stock evolution. 

A disaggregated build stock model is developed using System Dynamics to characterise the 

building aging process and stock turnover dynamics. This model is then operationalised by 
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separately investigating five candidate parametric survival models to represent the 

uncertainties associated with building lifetime. With each survival model, the stock turnover is 

simulated through Markov Chain Monte Carlo methods to obtain the posterior predictive 

distribution of total historical stock and the marginal likelihood used to estimate the posterior 

model probability. Bayesian Model Averaging is applied to create a model ensemble to 

combine model-specific predictions of the historical stock evolution pathway based on model 

probabilities. By extending the model structure and incorporating variables relating to possible 

trends in urbanisation and demand for per capita floor area, future stock turnover dynamics 

through 2100 are forecasted and then combined through model averaging. In so doing, we 

can obtain not only forecasts of total stock, age-specific substocks, annual new construction 

and annual demolition, but also their posterior predictive distributions which fully characterise 

their uncertainties. 

 

In summary, our study offers a first-of-a-kind analysis that employs a full Bayesian approach 

to investigate the uncertainties associated with modelling Chinese building stock, which is a 

policy relevant but under-researched area. The modelling approach adopted here is well 

suited to carry out studies of stock-level energy and carbon impacts. In particular, the model’s 

ability to explicitly track the aging process of substocks and fully represent probability 

distributions at both the stock and substock level is critical to analysing policy trade-offs facing 

Chinese residential buildings regarding embodied versus operational energy consumption and 

carbon emissions in the context of sector-wide decarbonisation. Beyond the present study 

aimed at assessing the Chinese building stock, the generality and flexibility of the modelling 

approach suggests its wider applicability in other geographical contexts. 
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